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A B S T R A C T   

Ethnopharmacological relevance: Echinacea purpurea (L.) Moench (EP) is a perennial herbaceous flowering plant 
with immunomodulatory effects. However, the immunomodulatory effects of EP on broilers after vaccination are 
still unclear. 
Aim of the study: The aim is to study the effect of EP and Echinacea purpurea (L.) Moench extracts(EE) on avian 
influenza virus (AIV) immunity, and further explore the potential mechanism of immune regulation. 
Materials and methods: Broilers were fed with feed additives containing 2% EP or 0.5% EE, and vaccinated against 
avian influenza. The samples were collected on the 7th, 21st, and 35th day after vaccination, and the feed 
conversion ratio (FCR) was calculated. Blood antibody titer, jejunal sIgA content, tight junction protein, gene and 
protein expression of TLR4-MAPK signaling pathway were also detected. 
Results: The results showed that vaccination could cause immune stress, weight loss, increase sIgA content, and 
up-regulate the expression of tight junction proteins, including zonula occludens-1 (ZO-1), Occludin, and 
Claudin-1, as well as the genes of Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 
(MyD88), receptor-associated factor 6 (TRAF6), activator protein 1 (AP-1) protein gene expression on TLR4- 
mitogen-activated protein kinase (MAPK) signaling pathway, and the protein expression of MyD88, extracel
lular regulated protein kinases (ERK), and c-Jun N-terminal kinase (JNK). EP and EE could increase the body 
weight of broilers, further improve antibody titers, decrease FCR, increase sIgA levels, up-regulate the expression 
of tight junction proteins, including ZO-1, Occludin, and Claudin-1, as well as the genes of TLR4, MyD88, TRAF6, 
and AP-1 and the protein expression of MyD88, ERK, and JNK in the TLR4-MAPK signaling pathway. 
Conclusion: In conclusion, EP and EE can increase the broiler’s production performance and improve vaccine 
immune effect through the TLR4-MAPK signaling pathway.   

1. Introduction 

Food security and safety is the major concern when consider animal- 
origin protein. In the era of a total ban on antibiotics in feed, with the 
increase in animal infectious diseases and the rapid mutation of patho
gens; the effectiveness of a large number of natural and safe herbal 
medicines in enhancing animal resistance, reducing drug resistance, and 
improving economic efficiency is needed (Anwar et al., 2023; Gul and 

Alsayeqh, 2022) EP is medicinal herbs indigenous to the United States 
and Canada. Native Americans used preparations of Echinacea roots to 
treat a variety of conditions associated with inflammatory and allergic 
disease, including swollen gums, inflamed skin, sore throats, and 
gastrointestinal disorders (Gulledge et al., 2018). EP also has a long 
history of medicinal use for mainly infections, indicated in bacterial and 
viral infections, and as an “anti-toxin” for snakebites and blood 
poisoning (Williamson, E. M, 2003). Other traditional uses listed include 
nasopharyngeal catarrh, pyorrhoea (periodontitis) and tonsillitis, as a 
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supportive treatment for influenza-like infections and recurrent in
fections of the respiratory tract and lower urinary tract, and, externally, 
for poorly healing superficial wounds (Barnes et al., 2005). EP is a 
perennial herbaceous flowering plant that contains dozens of active 
ingredients, including alkylamides, caffeic acid derivatives, poly
saccharides, and glycoproteins (Awortwe et al., 2021; Ren et al., 2023). 
Alkylamides in EP are mainly responsible for anti-inflammatory, im
mune regulation, and macrophage regulation (Vieira et al., 2023). These 
Alkylamides can make mast cell degranulation and calcium influx, 
thereby treating allergic and inflammatory responses mediated by mast 
cells (Travis et al., 2018). Caffeic acid derivatives in EP include chicoric 
acid, caftaric acid, and chlorogenic acid (de Oliveira et al., 2021). They 
mainly have antioxidant and anti-ulcer, anti-inflammatory, 
anti-allergic, and antiviral effects (Ravazzolo et al., 2022; Ye et al., 
2019). Polysaccharides in EP have the effects of anti-tumor, anti-
oxidation, antibacterial, anti-virus, immune regulation, hypoglycemic, 
liver protection, and gastrointestinal protection (Jiang et al., 2021; Liu 
et al., 2020, 2022; Shi et al., 2021). Numerous studies have shown that 
Echinacea has immunomodulatory, anti-inflammatory, antiviral, anti
bacterial, and antioxidant therapeutic effects. EP stimulates the immune 
system in three ways: by activating phagocytosis, stimulating fibro
blasts, and increasing respiratory movement. These actions can increase 
the movement ability of white blood cells (Khattab et al., 2019; Michele 
et al., 2018; Park et al., 2018; Paulovicova et al., 2022; Seckin et al., 
2018). EP also activates the immune system by increasing the number, 
function and mobility of various immune cells, including neutrophils, 
polymorphonuclear leukocytes, and NK cells, further enhancing innate 
immunity, and playing an anti-inflammatory role (Khalaf et al., 2019; 
Khattab et al., 2019; Thomsen et al., 2018). Therefore, it is believed that 
the most important active ingredient in EP is responsible for enhancing 
immunity and anti-inflammatory effects (Aarland et al., 2017; Pillai 
et al., 2007; Sousa et al., 2018; Sultan et al., 2014). However, there is 
still insufficient research on EP and EE. Most studies on its immuno
modulatory mechanism include in vitro cell experiments and are rarely 
further verified in vivo in animals. Furthermore, there are few studies on 
the application of EP in poultry, especially its preventive effect as a feed 
additive. 

AIV is a common infectious disease in the poultry breeding industry. 
The detection rate of H5, H7, and H9 subtype AIV in Chinese chickens 
without vaccination was 39.26% (Song et al., 2021). AIV also poses the 
risk of antigenic drift and introduction of new viruses (Hartaningsih 
et al., 2015; Lee et al., 2022). It is also easy to reassort with other sub
types, producing new recombinants such as the H7N9 virus. Although, 
the live attenuated H9N2 vaccine provides good multiple immunity, 
including humoral immunity, cellular immunity, and mucosal immu
nity, the risk of reassortment between the vaccine strain and the 
wild-type strain remains a concern (Chen et al., 2020). Additionally, 
avian influenza is a zoonotic disease, and people who are in direct 

contact with live poultry are susceptible to the disease. Since, the first 
case of novel H7N9 infection was reported, there have been five H7N9 
outbreaks in China. In the fifth wave of the epidemic, a highly patho
genic H7N9 strain appeared. At the same time, the H7N9 virus continues 
to accumulate and mutate, and the affinity of the human respiratory 
epithelial cell sialic acid 2–6 receptor is enhanced (Bortolami et al., 
2022). There have been five outbreaks of novel H7N9 infection in China 
since the first reported case. In the fifth wave of the outbreak, a highly 
pathogenic strain of H7N9 emerged. Additionally, the H7N9 virus has 
accumulated mutations and now has an increased affinity for the human 
respiratory epithelial sialic acid 2–6 receptor, making immune protec
tion in chickens crucial (Wu et al., 2020). However, due to the high 
variability and individual differences of the virus, animals may not be 
able to mount an effective immune response, resulting in immune fail
ure. As a result, the development of a cheap, safe, and effective immune 
adjuvant has significant potential applications (Ren et al., 2022b). EP 
also demonstrates antiviral activity. EP has a significant inhibitory effect 
on coronavirus. The half-maximal inhibitory concentration of EP on 
human coronavirus 229E (HCoV-229E) is 3.2 μg/mL, and MTT assays on 
Huh-7, Vero, and Vero E6 cells show irreversible inactivation of 
HCoV-229E (Saifulazmi et al., 2022). EE exhibit profound antiviral ac
tivity against several viruses, including human and avian influenza vi
ruses, H3N2-type IV, H1N1-type IV, herpes simplex, and rhinoviruses, 
and reverse virus-induced proinflammatory responses (Dobrange et al., 
2019). Compounds screened from narrow-leaved EP are protein in
hibitors of Japanese encephalitis virus-RNA dependent RNA polymerase 
(JEV-RdRp), exhibiting inhibitory effects on JEV(Yadav et al., 2022). 
Adding EP to feed at 5 g/kg can increase the antibody level of chickens 
after inoculation with Newcastle disease vaccine (Gado et al., 2019). 
Oral administration of EP can significantly reduce the number of diar
rhea days in calves vaccinated with a bluetongue virus (BTV) vaccine, 
indicating that oral EP stimulates the local intestinal immune system 
and enhances vaccine efficacy (Ayrle et al., 2021). In addition, IMU 
(based on EP and Nigella sativa) significantly increases vaccine protec
tion rates, HI antibody titers, and phagocytic activity of heterophilic 
granulocytes while reducing stress-induced viral shedding and viral ti
ters. Oral administration of 1% IMU for six weeks enhances the immune 
response after AI-H9N2 vaccine inoculation and reduces the pathoge
nicity of infected stressed chickens (Eladl et al., 2019). 

2. Materials and methods 

2.1. Plant material 

Echinacea purpurea (L.) Moench, this name is reported by Aster
aceae as an accepted name in the genus Echinacea and family Asteraceae 
(The World Flora Online, http://www.worldfloraonline.org./t 

axon/wfo-0000036347). The record derives from TICA which 

Abbreviations 

AIV avian influenza virus 
AP-1 activator protein 1 
BTV bluetongue virus 
EE Echinacea purpurea (L.) Moench extracts 
EP Echinacea purpurea (L.) Moench 
FCR feed conversion ratio 
group C control group 
group V vaccine control group 
group VE Echinacea purpurea group 
group VEE Echinacea purpurea extract group 
HA hemagglutinin 
HCoV-229E Echinacea on human coronavirus 229E 

HI hemagglutination inhibition 
IRAK1 interleukin 1 receptor-associated kinase 1 
JEV-RdRp Japanese encephalitis virus-RNA dependent RNA 

polymerase 
JNK c-Jun N-terminal kinase 
LPS lipopolysaccharide 
MAPK mitogen-activated protein kinase 
MyD88 myeloid differentiation primary response 88 
RT-PCR real-time PCR 
SCFA short-chain fatty acid 
TLR4 Toll-like receptor 4 
TNF tumor necrosis factor 
TRAF6, receptor-associated factor 6 
ZO-1 occludens-1  
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reports it as an accepted name (record GCC-AADAD3F3-3650 -4DDD- 
BB13-E9573CBE0045). The information about the preparation method 
and effective components of EP is the same as that of this article pub
lished in our laboratory(Gu et al., 2023). 

2.2. Experimental layout/plan 

All the experimental procedures were carried after approval by the 
Animal Ethics Committee of South China Agricultural University (Li
cense Number: SYXK, 2022-0136), and were in accord with the re
quirements of the National Institutes of Health Guide for the Care and 
use of laboratory animals. After a one-week adaptation, a total of 80 
broiler birds (Fast-Growing Yellow Broilers) were randomly divided into 
four groups with 20 birds in each group. The experiment included a 
control group (group C) and vaccine control group (group V),fed on a 
basal diet with and without AIV immunization respectively. While, other 
groups, the EP group (group VE), and the EE group (group VEE) addi
tionally received supplementation of EP and EE at 20 g/kg and 5 g/kg 
respectively in basal diet alongside AIV vaccine at the age of 9 days. The 
weight was measured at 7, 21, and 35 days after vaccination, and the 
average daily weight gain, average daily feed intake, and feed conver
sion ratio (FCR) were calculated for each group. 

2.3. Detection of antibody titers by hemagglutination-hemagglutination 
inhibition (HA-HI) test 

HA-HI test was performed as described previously by Fayyaz with 
some modifications (Fayyaz et al., 2023) Briefly, at 7th, 21st, and 35th 
days after vaccination, 6 broilers were randomly selected from each 
group for blood collection and the serum was separated for the 
hemagglutination-hemagglutination inhibition test. The 4-unit antigens 
were prepared based on the hemagglutinin (HA) titer. The hemagglu
tination inhibition (HI) tests were performed by double diluting sera 
with PBS. The diluted sera were mixed with an equal volume of 4-unit 
HA antigens and incubated at 37 ◦C for 20 min. Then, 1% (v/v) 
chicken erythrocytes were added and incubated at 37 ◦C for 20–30 min. 
The HI titer was determined as the maximum serum dilution that 
completely inhibited hemagglutination. The antibody titers were 
determined against H5N2 rHN5801, rGD59, and H7N9 rHN7903 strains. 

2.4. Real time-PCR analysis 

The primers and sequences of real-time PCR (RT-PCR) are shown in 
Table 1. Total RNA was extracted from 100 mg of jejunum using RNA 
isolation reagent (Vazyme, China). The total RNA was isolated using 
chloroform and precipitated with isopropanol. The residual isopropanol 
was cleaned with ethanol. Total RNA concentration was measured by 
Microvolume UV–Vis spectrophotometer. (NanodropTM One; Thermo 
Fisher Scientific, Madison, WI, USA). Reverse transcription was per
formed using approximately 5 μg of total RNA into cDNA using HiScript 
III RT SuperMix for qPCR (Vazyme, China). The mixture contained 1 μL 
cDNA primer, and used the ChamQ University SYBR qPCR Master Mix 
(Vazyme, China) in the real-time PCR detection system (QuantStudioTM 
5; Thermo Fisher Scientific, Waltham, MA, USA). The relative expression 

level of genes was calculated by 2–11 (Ct) method, and GAPDH was used 
as the internal reference gene. The results were expressed as normalized 
mRNA levels of reference genes. 

2.5. Western blot analysis 

Western blot assay was performed as described previously by Wang L 
with some modifications (Wang et al., 2023). The antibodies used for 
Western blot are shown in Table 2. Approximately 100 mg of jejunum 
was lysed with RIPA lysis buffer (Meilunbio, China) and 1 mM protease 
inhibitor (PMSF) (Meilunbio, China) at 4 ◦C. The protein concentration 
was determined using a BCA protein concentration determination kit 
(Yamay biotech, China). After that, the samples were diluted with 5 ×
SDS-PAGE loading buffer and boiled for 8 min. An equal amount of 
protein sample (10 μg) was loaded and separated by 12.5% 
SDS-polyacrylamide gel electrophoresis and then transferred to a poly
vinylidene fluoride membrane. The membrane was blocked with 5% 
skimmed milk powder in Tris-buffered saline containing Tween (TBST) 
for 1 h, followed by overnight incubation with primary antibodies. The 
membrane was washed three times with TBST and then incubated with 
secondary antibody for 1 h. The signal was detected using an electro 
chemiluminescent liquid (ECL) (Meilunbio, China). The gray value of 
each band was quantified using ImageJ software and normalized. 

2.6. Statistical analysis 

The data were analyzed using GraphPad Prism 8.0 and SPSS 26.0. 
The independent sample t-test was used to analyze differences between 
groups, and data were expressed as mean ± standard deviation (SD). 
Differences between groups were analyzed by one-way analysis of 
variance (ANOVA), and statistical significance was considered as P <
0.05. 

3. Results 

3.1. Effect of EP and EE on growth performance of broilers immunized 
with AIV vaccine 

The results of body weight and FCR are shown in Table 3. There was 
no significant difference in body weight among all treatment groups on 
days 7 and 21 after vaccination (P > 0.05). On day 35, body weight was 
significantly higher in group VEE compared to group V (P < 0.05). 

Table 1 
The nucleotide sequence of primers used for real-time PCR.  

Gene 5′-primer (F) bp 3′-primer (R) bp 

β-actin GCACCTAGCACAATGAAA 18 GATAGAGCCTCCAATCCA 18 
Occludin CGTCATGCTCATCGCCTCCATC 22 TTGAGGTAGGTGCTGCCGTAGG 22 
Claudin1 GACCAGGTGAAGAAGATGCGGATG 24 CGAGCCACTCTGTTGCCATACC 22 
ZO-1 TCTTCCTCCTCCCGCTTCTTCAC 23 AGAGATGGTGGTGTAGGCAGTGG 23 
TLR-4 CATCCCAACCCAACCACAGTAGC 23 CCACTGAGCAGCACCAATGAGTAG 24 
MyD88 GTACTTACGAAGGAAGCAGCAGGAG 25 ATGCCCATCAGCTCTGAAGTCTTTG 25 
TRAF6 AGGAATGAACTGGCACGACACATG 24 GAAGAGGGCAGGCTCAAATGGTAG 24 
AP-1 CGCCTCATCATCCAGTCCAACG 22 TGGTTCTGCTTGTGCAAGTCCTC 23  

Table 2 
List of antibodies used for Western blot.  

Name Company Cat. no. Dilution 

TLR4 Rabbit pAb Bioss bs-20379R 1:1000 
MyD88 Rabbit pAb Novus Biologicals NB100-56698 1:1000 
ERK1/2Rabbit pAb Abmart T55487 1:1000 
JNK1/2/3Rabbit pAb Abmart T40073 1:1000 
TRAF6Rabbit pAb ABclonal A16991 1:1000 
GAPDHRabbit pAb ABclonal AC001 1:9000 
Goat anti-Rabbit IgG Zenbio H&L 1:5000  

X. Wang et al.                                                                                                                                                                                                                                   



Journal of Ethnopharmacology 319 (2024) 117306

4

On day 7 after vaccination, the FCR of the VE and VEE groups was 
significantly lower compared to the groups C and V (P < 0.05). Simi
larly, on day 21, the FCR of group VEE was significantly reduced 
compared to the C, V, and VE groups (P < 0.05) while, on day 35, the 
FCR of V, VE, and VEE groups significantly decreased compared to C 
group (P < 0.05). Besides, the V and VE groups also showed a significant 
reduction compared in FCR compared to the VEE group (P < 0.05). 

3.2. Effect of EP and EE on antibody of broilers immunized with AIV 
vaccine 

The results of the effects of EP and EE on alteration of antibody levels 
are shown in Fig. 1. No significant differences were recorded in the 
levels of rHN58, rHN7903 and rGD59 antibodies among all groups 
before vaccination. However, after vaccination, the antibody levels of 
rHN58 and rGD59 for groups V, VE, and VEE showed a significant in
crease on day 7 (P < 0.01), day 14 (P < 0.01), day 21 (P < 0.001), day 28 
(P < 0.001), and day 35 (P < 0.001) compared to those of group C. 
Besides, at 35th day, the antibody levels of rHN58 in group VE expressed 
significantly higher value compared to those in group V(P < 0.05). 
Similarly, the antibody levels of rHN7903 were significantly higher in 
group V compared to control on day 7 (P < 0.05) while, all groups 
including V, VE, and VEE exhibited a significant increase for day 14 (P <
0.001), day 21 (P < 0.001), day 28 (P < 0.001) and day 35 (P < 0.001) 
for the same antibody compared to group C. Additionally, the antibody 
levels of rGD59 were significantly higher compared to group V at 7th 
and 14th day for VE group (P < 0.01) and for both VE and VEE groups on 
21st day (P < 0.01). Likewise, antibody levels of rHN7903 in VE and VEE 
groups were also extremely higher than those in group V on 28th day (P 
< 0.001). 

3.3. Effect of EP and EE on intestinal immunity of broilers immunized 
with AIV vaccine 

As represented in Fig. 2, on day 7, the concentration of sIgA in in
testinal mucosa was significantly higher in the group VEE compared to 

the groups V, C, and VE (P < 0.01). On day 21, there were no significant 
differences among all groups (P > 0.05). On day 35, the concentration of 
sIgA in intestinal mucosa for groups V, VE, and VEE was significantly 
higher compared to group C (P < 0.05). 

Fig. 3 depicts the expression of tight junction proteins ZO-1, Occlu
din, and Claudin-1. On day 7, the expression of ZO-1 and Occludin was 
significantly higher in the VEE group (P < 0.01) compared to V, C, and 
VE groups while, the gene expression of Claudin-1 was not significantly 
different between the groups (P > 0.05); On the day 21, the gene 
expression of ZO-1 and Occludin in VEE group was significantly higher 
(P < 0.05) as compared to V, VE, and C groups. Besides, the gene 
expression of Claudin-1 was significantly higher in groups VE and VEE 
(P < 0.05) than that in group C. However, no significant difference was 
recorded in the gene expression of ZO-1 and Occludin among each group 
on day 35, but the gene expression of Claudin-1 was significantly higher 
in group VE (P < 0.05) than that in group C. 

Fig. 4 shows the gene expression of TLR4, MyD88, TRAF6, and AP-1. 
On day 7, the gene expression of MyD88 was significantly higher in the 
V, VE, and VEE groups (P < 0.01) than in group C; while, the gene 
expression of TRAF6 and AP-1 remained non-significant among groups 
(P > 0.05). On day 21, the gene expression of MyD88, TLR4 and AP-1 
remained insignificant among all groups (P > 0.05). Also, the gene 
expression of TRAF6 was significantly higher in group VEE (P < 0.01) 
compared to groups V and C. On day 35, the gene expression of TLR4 
was significantly higher in groups VE and VEE (P < 0.05) than in groups 
V and C.Likewise, compared with the group C, the gene expression of 
MyD88 significantly increased in group VEE (P < 0.05). For gene 
expression of TRAF6, there was no significant difference among all 
groups (P > 0.05). Gene expression of AP-1 significantly increased in the 
group VEE compared with the other groups (P < 0.05). 

As shown in Fig. 5, on day 7, the relative protein expression of 
MyD88 was significantly higher in group VE compared to group V (P < 

Table 3 
The effects of EP and EE on growth performance of broilers on days 7,21,35.   

Body Weight FCR 

7d 21d 35d 7d 21d 35d 

C 257.400 
± 6.462 

743.740 
± 122.215 

1375.600 
± 92.604ab 

2.220 
±

0.249a 

2.231 
±

0.134a 

3.195 
±

0.072a 

V 259.700 
± 9.464 

702.040 
± 36.517 

1290.700 
± 154.793b 

2.355 
±

0.174a 

1.977 
±

0.666a 

2.543 
±

0.061c 

E 263.800 
± 20.554 

753.200 
± 44.386 

1394.500 
± 209.444ab 

1.745 
±

0.108b 

2.222 
±

0.286a 

2.586 
±

0.071c 

EE 264.800 
± 20.554 

752.940 
± 88.891 

1538.500 
± 122.376a 

1.801 
±

0.147b 

1.321 
±

0.528b 

2.825 
±

0.274b 

All data were presented as mean ± SD(n = 6). Means with different superscripts 
(abc) within the same column differ significantly (P < 0.05). 

Fig. 1. The effects of EP and EE on the levels of antibodies in broilers on days 7,14,21,28,35:a) rHN580, b) rHN7903, c) rGD59. All data were presented as 
mean ± SD(n = 6). *p < 0.05,**p < 0.01,***p < 0,001 compared to the group C; #p < 0.05,##p < 0.01,###p < 0,001 compared to the group V. 

Fig. 2. EP and EE affecting the concentration of sIgA in intestinal mucosa. All 
data were presented as mean ± SD(n = 6). *p < 0.05,**p < 0.01,***p < 0,001 
compared to the group C; #p < 0.05,##p < 0.01,###p < 0,001 compared to the 
group V and intergroup. 
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0.05), and significantly higher in the group V compared to the group C 
(P < 0.05). Also, the relative protein expression of TRAF6 and ERK was 
pointedly higher (P < 0.001) in the group V compared to groups C, VE, 
and VEE. The relative protein expression of JNK was also significantly 
higher in group VE (P < 0.05) than in group C on day 7The results also 
showed that the relative protein expression of TLR4 was significantly 
higher in group VE (P < 0.05) than VEE, V, and C groups on day 21; the 
relative protein expression of ERK was significantly higher in groups VE 
and VEE (P < 0.01) relative to the group V; the relative protein 
expression of JNK was significantly higher in groups VE and VEE (P <
0.05) relative to the group V. On day 35, the relative protein expression 
of MyD88 was significantly higher in the group VEE (P < 0.05) than in 
the other groups, and the relative protein expression of ERK was 
significantly higher in the group VEE compared to the group V (P <
0.05).Besides, the relative protein expression of JNK was significantly 
higher in the group VEE compared to the groups V and VE (P < 0.01). 

4. Discussion 

Immunopotentiators are often combined with vaccines in order to 
enhance the effectiveness of vaccines. As research on the mechanisms of 

traditional Chinese medicine deepens, some studies have shown that 
traditional Chinese medicine has immune modulating effects and is 
considered as an ideal immune enhancer(Wang et al., 2022). Although, 
AIV vaccination is an effective and mandatory method in poultry pro
duction and breeding, the vaccine itself can cause a short-term decline in 
production performance, which may not be restored within the rela
tively short growth cycle of broilers (Orso et al., 2021). 

In our research, the dose range was preliminarily determined by 
literature(Li et al., 2022; Lee et al., 2013), and the dosage of EP 20 
mg/kg and EE 5 mg/kg was determined by our pre-experiment. Our 
results indicated that supplementation of EP and EE augment the broiler 
production performance. Our results were in line with the study of 
Hashem, M.A. who reported that adding EP to the diet can increase the 
weight and immune response of chicks (Hashem et al., 2020). Similarly, 
Q. C. Ren found that adding purified Echinacea polysaccharide to the 
diet can linearly increase the final live weight and daily body weight 
gain of broilers (Q.C. Ren, 2020). In another study, Awad reported that, 
adding 2.5, 5.00, and 7.5 g/kg of EP to the diet had a significant effect on 
egg production, egg weight, egg production rate, feed intake, and feed 
conversion rate of ducks (Awad et al., 2021). The results showed that 
AIV vaccination of broilers in one group without supplementation of EP 

Fig. 3. EP and EE affects the expression levels of tight junction protein in jejunum: a) relative ZO-1 mRNA expression, b) relative Occludin mRNA expression, 
c) relative Claudin-1 mRNA expression. All data were presented as mean ± SD(n = 6). *p < 0.05,**p < 0.01,***p < 0,001 compared to the group C; #p < 0.05,##p <
0.01,###p < 0,001 compared to the group V and intergroup. 

Fig. 4. EP and EE affects the immune gene expression in jejunum: a) relative TLR4 mRNA expression, b) relative MyD88 mRNA expression, c) relative TPAF6 
mRNA expression, d) relative AP-1 mRNA expression. All data were presented as mean ± SD(n = 6). *p < 0.05,**p < 0.01,***p < 0,001 compared to the group C; #p 
< 0.05,##p < 0.01,###p < 0,001 compared to the group V and intergroup. 
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and EE caused a decline in performance parameters, and did not recover 
at the end of the trial. However, it is evident from our results that adding 
EP or EE to the diet could improve the weight loss caused by the vaccine 
and the increase in FCR. Furthermore, even addition of EE is sufficient to 
improve the body weight significantly compared to that of unvaccinated 
broilers and to make the FCR significantly lower than that of unvacci
nated broilers. This could be related to the increased gene expression of 
jejunum tight junction proteins ZO-1, Occludin, and Claudin, which can 
promote intestinal absorption. 

The intestinal surface is covered by abundant number of closely 
adhered simple columnar epithelial cells. Both, epithelial cells and 
lymphocytes work together in the mucosal immune system. The main 
participants in this immune system are polymeric immunoglobulins, 
especially dimeric IgA (Zhang et al., 2023). The lipophilic extract of EP 
can promote the maturation and migration of mouse dendritic cells by 
regulating JNK, P38 MAPK, and nuclear factor kappa-B (NF-κB) path
ways (Yang et al., 2018), thereby inducing the proliferation and acti
vation of T (CD4+ and CD8+) and B cells, further inducing T helper cell 
differentiation and secretion of cytokines, and promoting the secretion 
of sIgA (Cai et al., 2022; Hussain et al., 2023). The results showed that 
adding EP and EE to the diet caused broilers to secrete sIgA earlier and in 
greater quantities, indicating that EP and EE could produce intestinal 
immunity faster and enhance intestinal immunity. 

There is a complex multi-protein network between intestinal 
epithelial cells, and intestinal tight junction proteins can play a crucial 
role in maintaining intestinal barrier stability. Typical tight junction 
proteins, such as ZO1, Claudin-1, and Occludin, can achieve a selective 

permeability barrier, which is more conducive to the absorption of nu
trients (Nazir et al., 2022; Tomaszewska et al., 2021). Polyphenols in EP 
have a positive regulatory effect on gut microbiota and short-chain fatty 
acid (SCFA)-producing bacteria (Ren et al., 2022a). SCFAs can promote 
the interaction between the SP1 transcription factor and Claudin-1 
promoter increasing protein abundance (Brandejs et al., 2022). In 
addition to stimulating claudin expression, SCFAs also accelerate the 
assembly of tight junctions through calcium/calcium-dependent protein 
kinase β-mediated AMP-activated protein kinase (Lei et al., 2022; Mátis 
et al., 2022; Zhang et al., 2021). Yong Y showed that ZO-1 and Claudin-4 
were associated with phosphorylated p38 and ERK1/2 in the duodenum 
of heat-stressed pigs (Yong et al., 2021). Similarly, it has been reported 
by Hu R that activation of TLR4-mediated inflammatory pathways, such 
as NF-κB, may potentially correlate with the expression of tight junction 
proteins (Hu et al., 2020). The results indicated that the expression of 
ZO1 and Occludin protein was enhanced in broilers fed with EE, which 
was significantly higher than that in the vaccine group. This indicates 
that EP and EE promotes the nutrient absorption and improves the 
production performance of broilers. 

Serum virus antibody levels are often used as indicators of the 
antiviral ability. Kim HaRim showed that EP could reduce the immu
nosuppression caused by cyclophosphamide, by stimulating spleen 
lymphocytes, particularly T and B lymphocytes, and by regulating the 
NK cell activity (Kim et al., 2021). Moreover, EP can regulate the den
dritic cells by regulating key cells and promoting cell fluidity and 
chemotaxis (Yin et al., 2010). The immune activity of EP may be 
attributed to chicoric acid, which can enhance the function of CD4+ T 

Fig. 5. Effects of EP and EE on the relative expression of jejunal proteins in broilers after immunization: a), b), c) is Western blot detects protein expression 
bands on days 7,21,35; d), e), f), g), h) is the level of the protein expression: TLR4,MyD88,TPAF6,ERK,JNK. All data were presented as mean ± SD(n = 6). *p < 0.05, 
**p < 0.01,***p < 0,001 compared to the group C; #p < 0.05,##p < 0.01,###p < 0,001 compared to the group V and intergroup. 
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cells and control NK cell activity, thereby improving immune response 
(Park et al., 2021). Moreover, Echinacea polysaccharides have immu
nomodulatory effects on dendritic cells, lymphocyte proliferation, and 
cytokines secretion (Yang et al., 2018)(Yao et al., 2019) In addition to its 
immunomodulatory activity, EP also has a very active killing effect on 
membrane-bound viruses such as AIV (Hudson J, 2011). In another 
study, Declerck Ken revealed that commercial EP’s antiviral effect was 
particularly prominent during the initial virus exposure (Declerck et al., 
2021). The results showed that EP and EE could significantly increase 
AIV antibody levels, resulting in faster antibody production by broilers 
and enhanced antiviral immunity against AIV. 

Currently, research on the mechanism of EP is focused on cAMP, NF- 
κB, p38/MAPK, and other pathways (Declerck et al., 2021; Li et al., 
2014, 2017), and less on TLR4 in broilers. Landmannshowed that 
cichoric acid can affect the gene expression of MyD88, interfering with 
the activation of TLR4-dependent signaling cascades. Likewise, Hou 
showed that EP can significantly upregulate AP-1 through JNK, playing 
an anti-inflammatory and hepatoprotective role (Hou et al., 2011). 
Similarly, the same immune pathway was observed in lipopolysaccha
ride (LPS)-infected chicks (Zhang et al., 2023). Some pharmacological 
studies on the TLR4 signaling pathway have shown that activated TLR4 
can recruit MyD88, subsequently, MyD88 attracting interleukin 1 
receptor-associated kinase 1 (IRAK1), IRAK4 and tumor necrosis factor 
(TNF), TRAF6 (You et al., 2022). Additionally, EP can induce phos
phorylation of JNK and ERK whereas, JNK can further activate innate 
immunity through JNK-STAT1 signaling. IFN signaling will induce 
various IFN-responsive genes to produce antiviral effects (Lee S, 2019). 
In another study, Yali Li disclosed that EP does not lead to phosphory
lation of ERK in mouse dendritic cells, which differs from our experi
mental results, and may be caused by different species and cells (Li et al., 
2017). Our experiment showed that EP and EE could activate the 
TLR4-MAPK signaling pathway, promote the gene and protein expres
sion of TLR4, MyD88, TRAF6, and AP-1 in the pathway, and also in
crease the protein expression of JNK and ERK. Significant differences 
were observed in mRNA levels of signaling factors at different time 
points after vaccination, indicating that EP and EE can regulate the 
TLR4-MAPK signaling pathway and improve and prolong broilers’ im
munity to AIV vaccine. 

5. Conclusion 

Vaccination against AIV can cause immune stress in broilers and 
reduce production performance, but it does not have a significant impact 
on the TLR4-MAPK signaling pathway. This suggests that the immune 
stress caused by the vaccine can be controlled and is only reflected in the 
production performance of broilers. For AIV-immunized broilers, adding 
EP and EE to the diet can enhance production performance by improving 
the mechanical barrier of the intestinal tract and enhancing the intes
tinal immunity and immune response to vaccines through regulation of 
the TLR4-MAPK signaling pathway. 
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